Estimation of Isomer Ratio of 2,3-Alkanedione Dioxime Using High-Resolution ¹³C NMR in the Solid State

Setsuko Kinoshita,* Hisanobu Wakita, and Isao Masuda Department of Chemistry, Faculty of Science, Fukuoka University, Nanakuma, Jonan-ku, Fukuoka 814-01 (Received August 15, 1985)

Synopsis. High-resolution ¹³C NMR spectra were measured for the CH₃–C(=NOH)–C(=NOH)–R (R=CH₃, C_2H_5 , n-C₃H₇, and n-C₄H₉) series in the solid state. A commercially available powder, dimethylglyoxime (R=CH₃), produced two C² signals, indicating two isomers: i.e., *s*-trans-(E,E) and *s*-cis-(E,E). The ratio of trans: cis was estimated to be 3:1.

Tanaka et al. reported that there are three possible structural isomers for dioximes.¹⁾ Each isomer gave

a different ¹H NMR signal for the NOH proton in DMSO-d₆ solution, and the ratio of the isomers was estimated from the ratio of the peak areas.¹⁾

On the other hand, a newly developed high-resolution ¹³CNMR technique (CP/MAS) was applied for coal and oil shale and the aromatic-olefinic fraction was determined by an integration of the solid-state spectra.²⁰

In this paper, CP/MAS spectra were measured for the 2,3-alkanedione dioxime (CH₃-C(=NOH)-C(=NOH)-R: R=CH₃, C₂H₅, n-C₃H₇, and n-C₄H₉) series in the solid state. The existence of *trans* and *cis* isomers was identified for a commercially available powder dimethylglyoxime (R=CH₃), and the ratio of the isomers was estimated from the ratio of the peak areas.

Experimental

A commercially available guaranteed reagent, dimethylglyoxime (Wako Pure Chemical Industries, LTD), was used for the measurement. Other 2,3-alkanedione dioximes were prepared as previously described³⁰ and recrystallized from methanol-chloroform (1:1). A JEOL NM-SH200 spectrometer (50 MHz for ¹³C) was used for the measurements. All spectra were obtained using magic-angle spinning at room temperature. The spectra were generated from ca. 1000 scans at a rate of one scan per ten seconds. The methylen carbon of adamantane (29.5 ppm from TMS) was used as an external standard.

Results and Discussion

The high-resolution ¹³C NMR (CP/MAS) spectra of 2,3-alkanedione dioximes are shown in Fig. 1. Also, numerical data are summerized in Table 1. Opella's method was used for the assignment of signals.⁴⁾ According to this method, only quarternary and methyl carbons appear as is exemplified for R=n-C₃H₇ dioxime in Fig. 2-a. In the case of R=C₂H₅, n-C₃H₇, n-C₄H₉ dioximes, the ¹³C NMR spectra in the solid state were similar to those obtained in DMSO-d₆ solution

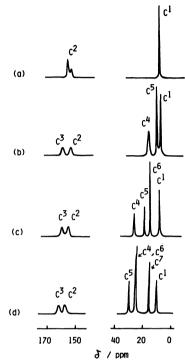


Fig. 1. High-resolution ¹³CNMR spectra (CP/MAS spectra) of CH₃-C(=NOH)-C(=NOH)-R in the solid state.

(a): R=CH₃, (b): R=C₂H₅, (c): R=n-C₃H₇, (d): R=n-

C₄H₉.
Fach carbon atom is noted as a following example

Each carbon atom is noted as a following example; C¹H₃-C²(=NOH)-C³(=NOH)-C⁴H₂-C⁵H₂-C⁶H₂-C⁷H₃.

Table 1. High-Resolution ¹³C NMR Data of CH₃-C(=NOH)-C(=NOH)-R

R	δ/ppm						
	C^1	\mathbb{C}^2	\mathbb{C}_3	C ⁴	\mathbb{C}^5	\mathbb{C}_{6}	\mathbf{C}^7
CH ₃	9.5	155.9 153.6	_	_	_	_	
C_2H_5	9.3	154.2	159.5	17.6	11.6	_	_
n - C_3H_7	9.6	155.1	159.0	27.5	20.2	16.2	_
n - C_4H_9	9.1	154.5	158.6	23.7	28.3	23.7	14.0

(Fig. 2-b, c). However, as for R=CH₃ dioxime, the C² resonance separated into two peaks in the solid state, though it appeared as a single peak in DMSO-d₆ solution (Fig. 3-b, c).

It was reported that carbons directly bonded to nitrogen atoms sometimes showed doublet patterns in CP/MAS spectra.⁵⁾ If this is also the case for the dioximes, the C^2 and C^3 resonances of $R=C_2H_5$, n- C_3H_7 , and n- C_4H_9 dioximes should show similar splittings. However, such a phenomenon was not observed (Fig. 1).

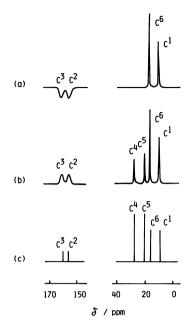


Fig. 2. ¹³C NMR spectra of CH₃-C(=NOH)-C(=NOH)-CH₂-CH₂-CH₃. (a): CP/MAS spectrum using Opella's method (in the solid state), (b): CP/MAS spectrum (in the solid state), (c): in DMSO-d₆ solution.

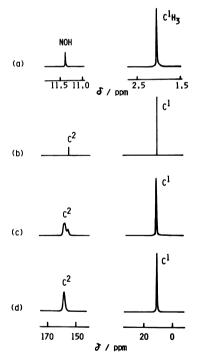


Fig. 3. ¹H and ¹³C NMR spectra of CH₃-C(=NOH)-C(=NOH)-CH₃.

(a): ¹H NMR spectrum in DMSO-*d*₆ solution, (b): ¹³C NMR spectrum in DMSO-*d*₆ solution, (c): CP/MAS spectrum of commercial powder compound, (d): CP/MAS spectrum of recrystallized crystal.

The ¹H NMR spectrum of the R=CH₃ dioxime showed only one NOH signal in DMSO- d_6 solution (Fig. 3-a), indicating that there are no isomers, such as the previously described (E,E), (Z,Z), and (Z,E). Since

the rotation of a C=NOH double bond is inhibited, it is hardly expected that there are such isomers only in the solid state.

The CP/MAS resonance sometimes splits into two peaks based on the "packing effect." According to an X-ray single crystal analysis of $R=CH_3$ dioxime (obtained by a slow evaporation of the solvent ethanol), the $R=CH_3$ dioxime has a *s-trans-(E,E)* conformation and the space group is $P\overline{1}-C_i^1$ with one molecule in the unit cell." Therefore, the peak splitting based on the "packing effect" cannot be expected for the $R=CH_3$ dioxime. When commercially available dimethylglyoxime ($R=CH_3$) was recrystallized by a slow evaporation of solvent ethanol or methanol-chloroform (1:1), the splitting of the C^2 resonance was not observed, though the C^1 resonance showed a similar signal as that of the commercial powder compound (Fig. 3-d).

Considering these facts, it is concluded that there were two isomers, i.e., *s-trans-(E,E)* and *s-cis-(E,E)*, in the commercial powder dimethylglyoxime. In solution, these two isomers were indistinguishable since the (HON=)C-C(=NOH) single bond can rotate freely.

NOH
$$R - C - C - R$$

$$HON$$

$$s-trans-(E, E)$$

$$R - C - C - R$$

$$HON$$

$$NOH$$

$$s-cis-(E, E)$$

The molar fraction of the two isomers was estimated by an integration of the spectra. For a quantitative analysis, the contact time (CT) and the repetition time (RT) must be appropriately chosen.²⁰ In this study, the CP/MAS spectra were taken while choosing CT= 2 ms and RT=10 s. Under these conditions, the dioximes (R=C₂H₅, n-C₃H₇ and n-C₄H₉) gave a peak ratio C²:C³=1:1 (Fig. 1), indicating the probability of the quantitative analysis. In the case of the commercial powder dimethylglyoxime (R=CH₃), it was estimated from an integration of the corresponding C² signals that the ratio s-trans-(E,E): s-cis-(E,E) is 3:1. As for R=C₂H₅, n-C₃H₇ and n-C₄H₉ dioximes, these molecules are considered to exist only in s-trans or s-cis forms in the crystals.

References

- 1) M. Tanaka, T. Shono, and K. Shinra, *Anal. Chim. Acta*, **46**, 125 (1969).
- 2) G. E. Maciel, V. J. Bartuska, and F. P. Miknis, *Fuel*, **58**, 391 (1979); H. A. Resing, A. N. Garroway and R. N. Hazlett, *Fuel*, **57**, 450 (1978).
- 3) M. I, H. Wakita, and I. Masuda, Bull. Chem. Soc. Jpn., **56**, 1627 (1983).
- 4) S. J. Opella and M. H. Frey, *J. Am. Chem. Soc.*, **101**, 5854 (1979).
- 5) G. E. Balimann, C. J. Groombridge, R. K. Harris, K. J. Packer, B. J. Say, and S. F. Tanner, *Phil. Trans. R. Soc. Lond. A*, **299**, 643 (1981).
- 6) S. Kinoshita, H. Wakita, and I. Masuda, Bull. Chem. Soc. Jpn., 59, 651 (1986).
- 7) W. C. Hamilton, *Acta Cryst.*, **14**, 95 (1961); L. L. Merritt, Jr. and E. Lanterman, *Acta Cryst.*, **5**, 811 (1952).